Akra-Bazzi Theorem

«  Master Theorem
Newton's Method to Solve Integer Square Root  »

The Akra–Bazzi method, or Akra–Bazzi theorem, is used to analyze the asymptotic behavior of the mathematical recurrences that appear in the analysis of divide and conquer algorithms where the sub-problems have substantially different sizes. It is a generalization of the master theorem for divide-and-conquer recurrences, which assumes that the sub-problems have equal size.

Formulation

\[\displaylines{ T(x)= \begin{cases} \Theta(1) , if \ 1 <= x <= x_0 \\ g(x) + \Sigma_{i=1}^k a^i T(b_i x) + f_i (x), if \ x > x_0 \end{cases} }\]

It follows:

  • $x>=1$ is a real number
  • $x_0$ is a constant, for $i=1,2,…,k, x_0 >= {1 \over b_i}, x_0 >= {1 \over 1-b_i}$
  • for $i=1,2,…,k$, $a_i$ is a positive constant number
  • for $i=1,2,…,k$, $a_i$ is a constant between $0< b_i < 1$
  • $k >= 1$ is an integer
  • $ g(x) \in O(x^c)$ where c is a constant
  • $ f_i (x) \in O({x \over (log_2x)^2})$ for all $i$

If we find $p$ where $\Sigma_{i=1}^k a_i b_i^p = 1$, then:

\[T(n) \in \Theta(x^p(1+ \int_1^x {f(u) \over u^{p+1}}du ))\]

Example

\[\displaylines{ T(n)= \begin{cases} 1, when \ 0 <= n <= 3 \\ n^2 + {7 \over 4}T(\lfloor {1 \over 2} n \rfloor) + T(\lceil {3 \over 4} n\rceil), when \ n > 3 \end{cases} }\]

Applying Akra-Bazzi method, find $p$ which $ {7 \over 4}({1 \over 2})^p + ({3 \over 4})^p = 1 $, in this example, $p=2$, using the formula:

\[\displaylines{ \begin{align} T(n) & \in \Theta(x^p(1+ \int_1^x {f(u) \over u^{p+1}}du )) \\ & = \Theta(x^2 (1+ \int_1^x {u^2 \over u^3}du )) \\ & = \Theta(x^2(1+ \ln x)) \\ & = \Theta(x^2 \log x) \\ \end{align} }\]

Reference

Published on 11 Jan 2021 Find me on Facebook, Twitter!

«  Master Theorem
Newton's Method to Solve Integer Square Root  »

Comments

    Join the discussion for this article at here . Our comments is using Github Issues. All of posted comments will display at this page instantly.